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1EDF Lab, Paris-Saclay (France)
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Abstract

Aiding to make decisions as early as possible by learn-
ing from past experiences is becoming increasingly im-
portant in many application domains. In these set-
tings, information can be gained by waiting for more
evidences to arrive, thus helping to make better de-
cisions that incur lower misclassification costs, but,
meanwhile, the cost associated with delaying the de-
cision generally increases, rendering the decision less
attractive. Learning requires then to solve an opti-
mization problem combining two types of competing
costs.

In the growing literature on online decision mak-
ing, very few works have explicitly incorporated the
cost of delay in the decision procedure. One recent
work [DBC15] has introduced a general formalization
of this optimization problem. However, the algorithm
presented there to solve it is based on a clustering step,
with all the attendant necessary choices of parameters
that can heavily impact the results. In this paper, we
adopt the same conceptual framework but we present
a more direct technique involving only one parameter
and lower computational demands. Extensive experi-
mental comparisons between the two methods on syn-
thetic and real data sets show the superiority of our
method when the classification of the incomplete time
series is difficult, which corresponds to a large fraction
of the applications.

Keywords: Early classification of time series, Cost
estimation, Sequential decision making.

1 Introduction

There exists nowadays an increasing awareness of the
importance of learning in support of online decision-
making. In emergency wards of hospitals, in con-
trol rooms of national or international electrical power
grids, in government councils assessing emergency sit-
uations, in all kinds of contexts, it is essential to make
timely decisions in absence of complete knowledge of
the true outcome. The issue facing the decision mak-
ers is that, usually, the longer the decision is delayed,
the clearer is the likely outcome (e.g. should the pa-
tient undergo a risky surgical operation), but, also, the
higher the cost that will be incurred if only because
earlier decisions allow one to be better prepared.

This is a classical optimization problem with a trade-
off between the gain of information that can be ex-
pected if one delays the decision, and the rising cost of
such a delay. It has historical roots in fields such as
sequential decision making and optimal statistical de-
cisions[DeG05, Ber85]. One technique especially has
gained a wide exposition: Wald’s Sequential Proba-
bility Ratio Test [WW48]. The task is to classify a
sequence of measurements xit into one of two possi-
ble classes −1 or +1. The likelihood ratio Rt =
P (〈xi1,...,x

i
t〉 | y=−1)

P (〈xi1,...,xit〉 | y=+1)
is computed and compared with two

thresholds set according to the required error of the
first kind α (false positive error) and error of the
second kind β (false negative error). One difficulty
lies in the estimation of the conditional probabilities
P (〈xi1, . . . , xit〉 | y). And, furthermore, there is no ex-
plicit reference to the cost of delaying the decision in
the choice of α and β.
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These limitations are shared with many modern
techniques that seek to classify incomplete sequences.
Most of them define some confidence metrics in order
to assess the degree of certainty of the decision if it was
taken instantly, but they do not take into account the
cost associated with the delay before deciding (see for
instance [ISS00, XPP09, XPP09, APTG12, PAGH13,
HC13, XPPW11]). In addition, these techniques im-
plement a myopic strategy by which they examine at
each new time step if a decision should be taken now,
or if it seems better to wait one more time step. They
do not try to look beyond the current state and esti-
mate what future instant could yield the best trade-off
between the quality of the decision and its cost.

In a recent paper [DBC15], a generic framework in
which to cast the optimization of quality of decision
and delaying cost was formalized. This work supposes
that there exists a set S of m training sequences, each
being a couple (xiT , y

i) ∈ RT × Y, meaning that it is
composed of T real valued measurements 〈xi1, . . . , xiT 〉,
and an associated label yi ∈ Y, where Y is a finite set of
classes. For instance, 〈xi1, . . . , xiT 〉 could be a sequence
of measurements of the arterial tension of a patient in
an hospital. After learning from S has taken place,
the goal is to classify each new incoming sequence x
(e.g. sequence of arterial tensions on a period of time
about a new patient) with as low a cost as possible,
combining the cost of misclassification and the cost of
delaying decision so far.

The set S of training sequences provides two types
of information that can be learned from. First, one can
extract typical patterns or evolutions in the sequences,
allowing one, in the predicting phase, to try to extrap-
olate the most likely continuation of a new incomplete
sequence. Second, it is possible to learn classifiers for
each time step: ht, that associates to incomplete se-
quences xt = 〈x1, . . . , xt〉 a label y ∈ Y.

From this, it becomes possible to express the ex-
pected cost of a decision after t time steps (t measure-
ments) as:

f(xt) =
∑
y∈Y

P (y|xt)
∑
ŷ∈Y

P (ŷ|y,xt) Ct(ŷ|y) + C(t)

(1)
where Ct(ŷ|y) : Y × Y −→ R is the misclassification
cost function that defines the cost at time t of predict-
ing ŷ when the true class is y, P (ŷ|y,xt) is the prob-
ability that ht, the learned decision function at time
t, classifies xt as ŷ = ht(xt) when it was really of the
class y, and C(t) is the time cost function which is non
decreasing over time. If this cost is computed for all
time steps t ∈ {1, . . . , T}, the optimal time t∗ for the

decision problem is defined as:

t∗ = ArgMin
t∈{1,...,T}

f(xt) (2)

However, this formulation of the problem does not
readily yield a method for finding, online, the optimal
decision time. First, it would require to compute all the
decision costs until time T before knowing what is t∗,
clearly defeating the purpose of the approach. Second,
the terms P (y|xt) and P (ŷ|y,xt) are difficult to esti-
mate on a single sequence. This requires that some gen-
eralization over the space of possible sequences takes
place.

In [DBC15], the authors presented an intuitively al-
luring solution to these problems.

First of all, they propose to capture typical evolu-
tions of the sequences xT using a clustering technique.
They thus end up with K clusters ck, (1 ≤ k ≤ K),
and equation (1) thus becomes:

f(xt) =∑
ck∈C

P (ck|xt)
∑
y∈Y

P (y|ck)
∑
ŷ∈Y

Pt(ŷ|y, ck)C(ŷ|y)

+ C(t) (3)

replacing the hard to compute conditional probabili-
ties P (y|xt) and P (ŷ|y,xt) by the more easily available
P (y|ck) and Pt(ŷ|y, ck).

Namely, they use a specific distance function be-
tween a incoming incomplete sequence and a cluster
that allow them to compute the term P (ck|xt). The
probabilities P (y|ck) are easy to compute from the
training set. Finally, a classifier ht is learned for each
time step, allowing to estimate Pt(ŷ|y, ck), the terms
of the confusion matrix associated with ht when the
sequences are recognized as belonging to each cluster
ck.

The second idea they introduce in order to overcome
the necessity to compute f(xt) for all t ∈ {1, . . . , T} is
to compute in advance, at time t, the expected costs
of decision for all future time steps. This is possible
since, given an incomplete sequence xt, its membership
to each cluster ck can be estimated, which provides
information about potential futures.
Given a time step t, the expected decision cost for any
future instant t+ τ is:

fτ (xt) =∑
ck∈C

P (ck|xt)
∑
y∈Y

P (y|ck)
∑
ŷ∈Y

Pt+τ (ŷ|y, ck)C(ŷ|y)

+ C(t+ τ) (4)
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yielding the expected best future time for decision as:

τ∗ = ArgMin
τ∈{0,...,T−t}

fτ (xt) (5)

The proposed algorithm is then very simple. Ob-
serving an incoming sequence xt = 〈x1, . . . , xt〉, the
expected cost of decision is estimated for all future de-
cision time using equations (4) and (5). If t is equal
to the estimated optimal decision time t∗ (τ = 0), the
procedure stops and a prediction ht(xt) is made1. Oth-
erwise, the algorithm waits for an additional measure-
ment xt+1, unless t = T .

This approach yields experimental results (see
[DBC15]) that remarkably agree with what one would
expect from an early decision system, viz:

• The time of decision rises when the classification
task is increasingly harder (for instance, if the data
is increasingly noisy), up until a point when, given
the difficulty of extracting information from the
signal, the system knows from its experience that
classification gains in the future cannot overcome
the delaying cost, thus deciding that it is not worth
waiting and it is better to make decision at the first
possible moment even though the quality of this
decision might be quite low.

• The time of decision decreases when the delay cost
function increases more rapidly with time.

However, the method requires the user to make a set
of choices that may be baffling. First, the choice of
a clustering method with all the attending choices of
parameters (e.g. distances, parameters of the method,
number of clusters, ...). Second the choice of a distance
between an incomplete sequence xt and a cluster ck
made of complete sequences. And, third, the choice of
a membership function in order to compute P (ck|xt).
All these choices can be tricky to make and can entail
non negligible variations in the results.

In this paper, while retaining the overall frame-
work presented in [DBC15], we introduce a competing
method which avoids the burdens associated with the
clustering approach. In particular, the new method
uses a segmentation of the training set which is much
more direct and simple, yielding more robust results
with lower computational demands.

The novel algorithm is presented in Section 2 below.
In order to test its properties, a set of experiments has
been devised, which includes controlled experiments

1Alternatively, a prediction ht(xt) can be made by combining
all the predictions ht(xt) weighted by the estimated membership
of xt to all clusters ck.

that allow one to check the validity of any early clas-
sification technique in a wide set of conditions, as well
as experiments on real data sets. This is described in
Section 3 and Section 4 where the empirical results and
findings both for the method presented in [DBC15] and
for the new approach are reported. The conclusion, in
Section5, underlines the pros and cons of the two com-
peting methods and highlights the domains in which
each of them is better suited.

2 A new algorithm

Aside the difficulties inherent in the use of a clustering
method, specially over sequences, there is another as-
pect that can make the approach described in [DBC15]
less than optimal. Indeed, from equation (3), repeated
below:

f(xt) =∑
ck∈C

P (ck|xt)
∑
y∈Y

P (y|ck)
∑
ŷ∈Y

Pt(ŷ|y, ck) C(ŷ|y)

+ C(t)

it is apparent that the membership of xt to a cluster ck
is important only insofar that the associated confusion
matrices, given by Pt(ŷ|y, ck), are different from one
cluster to the other. Otherwise, there is no point in
considering P (ck|xt), that is to which cluster belongs
the incoming sequence. In addition, the conditional
probabilities P (y|ck) should be as non uniform as pos-
sible.

If one, then, is considering an alternative way of seg-
menting the set of sequences, it should better lead to
confusion matrices that differ as widely as possible from
one category to another. It should also lead to terms
alike P (y|ck) as different as possible.

It is not easy to devise directly such a segmentation
of the sequences, but there exists an approach that
naturally favors these properties. The idea is to use the
confidence level of the prediction ht(xt) to make that
segmentation. (Remark: The following directly applies
to the binary classification case, it is more involved, but
possible to extend it to the multiple classification case).

Most binary classifiers, like neural networks, SVM,
Näıve Bayes, decision trees, a.s.o. can easily be made
to output a real number g(xt) in the range [0, 1] such
that ht(xt) = −1 if g(xt) ≤ 0.5 and ht(xt) = +1 oth-
erwise (the threshold 0.5 depends on the calibration of
the function gt). The value g(xt) can be interpreted
as expressing a confidence level in the prediction of the
class to which belongs xt, and when some care is taken
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over the choice of the loss function used to learn g,
g(xt) can even be interpreted as a probability to be-
long to class +1. (See [Pla99] for instance, that shows
how to associate a confidence level to the prediction of
a SVM).

What is interesting is that the confusion matrices
over examples that are predicted with a confidence level
close to 1 and over examples that are predicted with a
confidence level close to 0.5 are generally quite differ-
ent, which is natural if the confidence level g(xt) some-
what reflects the probability that the class +1 has been
predicted for xt. Hence, the idea to use confidence in-
tervals to differentiate classes of sequences.

A sequence xt will thus be recoded as a se-
quence 〈γ1, . . . , γt〉 of confidence intervals with each
γs(1≤s≤t) ∈ {1, N} one of the N intervals of confidence.
N is the only parameter in the method, in addition to
the size of the memory of the past taken into account,
as is explained below.

Therefore the segmentation method used in our al-
gorithm is the following. For each time step t, a func-
tion gt is learned using the training set S (and hence
a decision function ht(·) = sign

(
gt(·) − 0.5

)
). More

specifically, gt is learnt using the training sequences in
S reduced to their first t components 〈xi1, . . . , xit〉 and
their label yi.

Then, a discretization of the confidence interval
[−1,+1] for each time step is learnt. For each time
step t, the associated function gt induces an ordering of
the sequences in S from the sequence with the highest
confidence value gt(xt), to the sequence with the lowest
one. It is easy to compute a set of N − 1 thresholds on
[0, 1] for time step t such that each of the induced N
sub-intervals is associated with approximately |S|/N
sequences. This segmentation method automatically
corrects any bias in the calibration of gt.

Given this discretization scheme, resulting in varying
discretization thresholds depending on the time steps
t ∈ {1, . . . , T}, each sequence xt can be recoded as
a sequence of t confidence intervals γt where γt = `
if gt(xt) is in the sub-interval corresponding to ` ∈
{1, . . . , N}. (See Figure 1).

This recoding provides a way to compute the likely
future outlines of a given incomplete sequence xt.
Given the code 〈γ1, . . . , γt〉 of a sequence xt, the ob-
jective is to compute the probability for each future
time step t + s, (1 ≤ s < T − t), that γt+s = ` with
` ∈ {1, . . . , N}. Let us note −→γ t+s the vector made of
theN corresponding values: [p(γt+s = 1), . . . , p(γt+s =
N)]>. Then, in all generality, we want to compute
〈−→γ t+1, . . . ,

−→γ T 〉|〈γ1, . . . , γt〉.
This would entail learning a dependency matrix of

(T−t)×t values, and these dependency matrices should
be learned for all possible t ∈ {1, T − 1}. The number
of possible sequences in the code is NT , and it is re-
quired to estimate the probability of each one of them.
With N = 5 and T = 100, limiting sequences to 100
time steps, this is already approximately 7×1072 num-
bers to estimate. This is why we introduce a Markov
condition, namely that only −→γ t+1 will be computed
given as input the coded sequence: −→γ t+1|〈γ1, . . . , γt〉,
and all probability vectors after time t + 1, i.e. −→γ t+s
with 1 ≤ s ≤ T − 1 are computed using a one order
dependency: −→γ t+s+1|−→γ t+s.

In words, within this hypothesis, only the first fu-
ture time step −→γ t+1 is estimated given the whole past
history of xt coded as 〈γ1, . . . , γt〉, and thereupon all
future time steps are supposed to depend only on the
previous one.

Let us note Mt+1
t the N × N transition matrix

from time step t to time step t + 1 with elements
mt
u,v = p(γt+1 = v|γt = u), where u, v are confidence

intervals at time steps t and t + 1 respectively, that
is u, v ∈ {1, . . . , N}2. With N = 5 different confi-
dence intervals, the transition matrices have each 25
elements.

Let us note Mt+1
t,...,t−δ the (t×N)×N transition ma-

trix from a coded sequence 〈γt−δ, . . . , γt〉 represented
as t × N probability vector P〈γ1,...,γt〉 to the prob-
ability vector −→γ t+1. For illustration, suppose that
N = 5 and we only look at a length 2 sequence
coded as 〈γ1 = 2, γ2 = 4〉. Then the correspond-
ing probability vector has 10 components: P〈γ1,γ2〉 =

[0, 1, 0, 0, 0, 0, 0, 0, 1, 0]>.
Using these notations, and given an input coded se-

quence 〈γ1, . . . , γt〉, one can estimate the future prob-
ability vector using equation:

−→γ t+τ |〈γ1, . . . , γt〉 =

[τ−1∏
s=1

Mt+s+1
t+s

]
Mt

0,...,t P〈γ1,...,γt〉

(6)
In words, given the past coded history 〈γ1, . . . , γt〉,

one computes the next probability vector −→γ t+1 using
Mt

0,...,t P〈γ1,...,γt〉, and then, the probability vector at
horizon t + τ is computed thanks to a product of one
order transition matrices

∏τ−1
s=1 Mt+s+1

t+s .
However, even this simplified scheme necessitates to

learn large transition matrices Mt
0,...,t withN t elements

to be learnt, and this for all possible values of t ∈
{1, . . . , T − 1}, which amounts to NT+1−1

N−1 probability
values to be estimated, which, for N = 5 and T = 100
gives approximately 1071 values to learn.

Suppose then that only the last δ codes
〈γt−δ+1, . . . , γt〉 of an input sequence xt be used
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Figure 1: How sequences are coded using confidence intervals. Here, the thick curve is coded as 〈γ1 = 3, γ2 =
3, γ3 = 2, γ4 = 3, γ5 = 4, γ6 = 3〉. Actually, the sequences here depicted as curves in order to better visualize
them are sequence of points 〈x1, x2, x3, x4, x5, x6〉 with no curves in between. The confidence intervals vary
from one time step to another as explained in the text.

to compute the future states, we get the following
expression:

−→γ t+τ |〈γt−δ+1, . . . , γt〉 =[τ−1∏
s=1

Mt+s+1
t+s

]
Mt
t−δ+1,...,t P〈γt−δ+1,...,γt〉 (7)

where Mt
t−δ+1,...,t which requires O(Nδ) probability

values to be learned. Even with δ = 2, and N = 5,
53 = 125 probabilities must be estimated, and this for
all values of t.

In the experiments reported below, and because we
had only a few thousands training time sequences, we
have radically simplified the approach and used a one
order memory, yielding the equation:

−→γ t+τ |〈γt〉 =

[τ−1∏
s=1

Mt+s+1
t+s

]
P〈γt〉 (8)

which computes the vector −→γ t+τ = [γt+τ = `]>1≤`≤N .

This requires only the estimation of T ×N2 proba-
bility elements using the training set. This first order
Markov model provides a baseline with which to assess
the minimal capacity of the method.

We can now return to the computation of the ex-

pected decision cost for future time steps:

fτ (xt) =∑
y,ŷ∈Y

N∑
`=1

(γt+τ = `|〈γt〉) Pt+τ (ŷ|y, γt+τ = `)

× C(ŷ|y, γt+τ = `)

+ C(t+ τ) (9)

Using equation (9), one obtains an estimation of
the optimal decision time to come: t∗ = t +
ArgMinτ∈{0,...,T−t} fτ (xt).

The whole method can be described by two algo-
rithms. One for learning from a set S of training se-
quences (see Algorithm 1), and one for making decision
(see Algorithm 2).

Compared to the algorithm presented in [DBC15],
the method described above has several advantages:

1. Aside the choice of the class of prediction func-
tions g (and hence of decision functions h) that
must be made whatever the approach, there are
two parameters to set. The first is N , the number
of confidence intervals one is willing to consider.
Higher values of N may seem preferable because
they would yield higher precision. But this is il-
lusory since what matters is the difference in the
confusion matrices. In addition, one obtains a bet-
ter precision on the estimation of these matrices
if the number of training sequences used to com-
pute them is large. As will be seen below, a good
choice seems to be N = 5. The second parameter
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Algorithm 1 Learning algorithm for early classifica-
tion of time series
Input:

• A training set S of m labeled time series (xiT , y
i) ∈

RT × Y (1 ≤ i ≤ m) ;

• A validation set S ′ of m′ labeled time series
(xjT , y

j) ∈ RT × Y (1 ≤ j ≤ m′) ;

• a set G = {Gmin ∪ . . .∪ GT } where each Gt is itself
a set of scoring functions: gt : Rt → [0, 1];

1: for t ∈ {min, . . . , T} do
2: Use a learning algorithm that takes as input S and

Gt and returns a function gt
3: Using gt and S: compute N confidence intervals on

[0, 1] as explained in Section 2
4: end for
5: for t ∈ {1, . . . , T − 1} do
6: Compute the transition matrices Mt+1

t

7: end for

Algorithm 2 Prediction algorithm for early classifi-
cation of time series
Input:

• An incomplete sequence xt with 1 ≤ t ≤ T

1: for t ∈ {1, . . . , T} do
2: Compute the sequence 〈γ1, . . . , γt〉 coding for xt
3: end for
4: for τ ∈ {0, . . . , T − t} do
5: Compute the expected cost fτ (xt) using equation (9)
6: end for
7: return t? = t+ ArgMinτ∈{0,...,T−t} fτ (xt)

is the order of the dependency taken into account,
similarly to Markov chain models that can depend
on the past to various degrees.

2. The confusion matrices that appear in equation 9
tend naturally to differ, leading to better estimates
of the future decision costs.

3. The conditional probabilities Pt+τ (ŷ|y, γt+τ = `)
tend also to differ for different values of the confi-
dence interval `, which favors better predictions.

In the following, we compare the two methods:
one we call “clustering-based” and the other called
“confidence-based” which is reduced here to its base-
line version with a first order time dependency. For
this, we use both synthetic data that allow a fine con-
trol of the parameters influencing the difficulty of the
task: possible gain of information with time, noise level

of the measurements and cost of delaying the decision
(see Section 3), and real-like data from the UCR repos-
itory (see Section 4).

In addition, when possible, that is on synthetic data,
we look at how close the methods come to the optimal
omniscient algorithm.

3 Experimental Evaluation on
Synthetic Data Sets

The goal of the experimental evaluation is to measure
how the methods behave when the (i) difficulty of the
decision task varies, and (ii) faced with varying levels
of increasing costs when delaying decision.

3.1 The generation of the synthetic
data sets

The difficulty of the decision task can naturally be de-
termined using two types of controlling parameters.
One that controls the information that can be gained
about the class of the incoming sequence with each new
measurement. And one that controls the noise level of
the measurements. The two parameters are not inde-
pendent as more noise decreases the information that
can be gained, but they still are complementary as the
noise level is supposed to be constant over time when
the gain of information can vary.

These types of control parameters were used in the
experimental setting described in [DBC15], and since
we want to compare the new method to the one pro-
posed in [DBC15], we generated data sets along the
same protocol.

The overall idea is to generate sets of time series
according to two class models, one for the +1 class and
one for the −1 class. In addition, within each class,
there are sub-classes, some of them that can share a
strong similarity with sub-classes of the other class.

Specifically, the time series have been generated ac-
cording to the following equation:

xt = t× slope× class︸ ︷︷ ︸
information gain

+ xmax sin(ωi × t + ϕj)︸ ︷︷ ︸
sub shape within class

+ η(t)︸︷︷︸
noise factor

(10)

The higher the value of the slope factor (noted
m below), the higher the gain at each time step.
At the same time, xmax controls the importance
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of the sub-classes within each class. If xmax = 0
there are no sub-classes, and little possible confusion
between the classes, except for the noise factor η(t).
If xmax has a large value, the sub-shape tend to
dominate the information gain factor, at least for
not large enough time step t. Figure 2 illustrates
what can be obtained for three classes of time series,
one with slope m = 0.01 (class y = +1), one with
m = −0.01 (class y = −1) and one with m = 0 (a
confusing class). Here xmax = 5 and the subclasses
are determined by the period ωi and phase ϕj . The
noise factor η(t) is randomly chosen from a Gaussian
distribution with a mean µ and a standard deviation σ.

We conducted experiments using two disjoint train-
ing sets S1 and S2 each containing 2, 500 time series
and a testing set T containing 5, 000 time series. Each
set is equally divided between the two classes y = −1
and y = +1.

The set S1 is used for learning the functions gt, while
the set S2 is used to compute the confidence inter-
vals for each time step t and the confusion matrices
Pt+τ (ŷ|y, γt+τ = `).

Table 1 displays the range of parameters used for
generating the synthetic data set.

In addition to the various types of data sets gen-
erated, we varied also the cost function C(t) that ex-
presses how costly it is to delay making a decision.
The cost function is a non decreasing function of time.
In our experiments, we used linear cost functions:
C(t) = constant× t.

3.2 Experimental results

For each method, and for each experimental condition
determined by the three controlling factors: informa-
tion gain m, noise level η(t) and cost of delaying deci-
sion C(t), we measured the following quantities:

The real costs are obtained for each test time se-
ries xt by computing the predicted class ŷ = ht(xt)
and comparing it with the real label y and evaluating
C(ŷ|y) + C(t).

The CPRCM value is an optimistic optimal value. It
is the cost (or gain if this is a negative value) that the
system would endure if it made a decision as soon as
the prediction is correct, ht(xt) = y, which can happen
accidentally even though the decision function ht is
bad. We still report this value since it gives an idea
of how far is the method to this (unrealistic) optimal
early decision method.

Table 8 reports the results for a slope m = 0.07.
Other results for the values m = 0.005, m = 0.01,
m = 0.05 and m = 0.1 are available at:

https://github.com/asma-dachraoui/

ECTS-Costly-delaying-decision.

3.3 Comparison of the methods and in-
terpretation

A first look at the table of results shows that:

• For both methods, when the cost of relying de-
cision increases (from 0.001 × t to 0.1 × t), the
algorithms decrease the waiting time (if one looks
for the same noise level η(t)).

• As the difficulty of the task increases, with mount-
ing noise level (from 0.1 to 20) the algorithms tend
to first increase the time of decision, because it is
more difficult to make a good prediction early on,
before deciding that it is not worth waiting, and
making a prediction after 4 time steps, which is the
minimum amount of time set in our experiments.

• However, the confidence-based method tends to
delay the “discouragement” phase more than the
clustering-based method. This is advantageous for
small and medium values of η(t) and tend to be
slightly disadvantageous when the noise level is
high.

In order to compare the two algorithms, we per-
formed paired statistical t-tests, computed using

d
sd/
√
N

, where d is the difference between the two ob-

servations on each pair, sd is the standard deviation
of the differences and N = 225, the number of ex-
amples. We compared the cost incurred by the two
systems when following their decision policies: CRCM.
The question was: is one algorithm significantly su-
perior to the other in the experimental setting? Ta-
ble 3 gives the results for the paired t-tests when
we consider the difference CRCM(clustering-based) −
CRCM(confidence-based). For small and medium cost
of delaying decision, the confidence-based method is
significantly better than the clustering-based method
(largely above the significance level for α = 0.05%).
Nothing can be said one way or the other for C(t) =
0.07, while the clustering-based method is better for
C(t) = 0.1, because it does not wait to make a deci-
sion.

These results show that the confidence-based
method, even in the baseline implementation, is clearly
superior to the clustering-based method.

We also compared the proximity of the real cost
CRCM incurred by each algorithm with the optimal
cost CICM given by the omniscient algorithm. In Ta-
ble 4, we report the results for the paired t-test when
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Figure 2: An example from synthetic data set S where η : (µ = 0, σ = 0.2).

Parameter Description Value(s)
T number of data points 50

xmax sine amplitude 5
{ω1, ω2, ω3} sine period { 9Π

T ,
10Π
T , 10.3Π

T }
{ϕ1, ϕ2} sine phase {0, Π

2 }
m slope m ∈ {0.005, 0.01, 0.05, 0.07, 0.1}
η noise as Gaussian distribution µ = 0, σ ∈ {1 : 200}
K Number of sub-classes in each class K = 3 (see sine period values)

Table 1: The set of parameters used for the generation of the data sets.

we consider the differences CRCM(clustering-based)-
CICM(perfect algorithm) and CRCM(confidence-based)-
CICM(perfect algorithm). Again, the confidence-based
method significantly better approximates the optimal
decision time .

Another mean to compare the methods is to look
at the highest level of noise η(t) for which a method
yields a cost that is better than the cost incurred when
deciding at the first possible moment (4 in these ex-
periments) with a margin of at least 0.1. For in-
stance, (see Table 8), for m = 0.07 and C(t) = 0.001,
CECM ≤ 0.004 − 0.1 up to noise level η(t) = 5 (for
which CECM = −0.1 for the clustering-based method),
while this is true up to η(t) = 20 for the confidence-
based method. Thus, for m = 0.07 and C(t) = 0.001,
the clustering-based method is significantly winning,
according to our rule, for 5 values of noise levels, while
the confidence-based methods is winning for all the 7
noise levels reported in the experiments.

This comparison, for all values of m and values of
C(t) can be expressed as the histogram of Figure 3.
It is apparent that the Confidence-based method is
winning in all the situations in which the Clustering-

based method wins, plus others. It thus brings signif-
icant gains in a wider spectrum of situations than the
Clustering-based method.

4 Experimental Evaluation on
Real-like Data Sets

The goal here was to test the methods with real like
data. For this, we chose data sets from the UCR Time-
Series Classification/Clustering archive [CKH+15].

The data sets correspond to real binary classification
problems. For example, the data set FordA includes
time series collected from an automotive subsystem.
Each example in the data set consists of a time series
composed of 500 data points recording the engine noise
and a label describing the diagnostic result according
to a certain symptom. Class +1 is associated with the
diagnosis that the symptom exists and −1 with the
diagnosis that the symptom does not exist.

Out of the 31 data sets involving two classes in
the UCR archive, we selected 11 data sets: Distal-
PhalanxOC, ECGFiveDays, ItalyPowerDemand, Mid-
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Quantity Description
τ?ETM mean of the decision time computed by the method ± standard deviation
CRCM mean real cost using decision time τ?ETM

τ?PETM decision time = t∗ = ArgMint∈{1,...,T} f(xt)

(using the knowledge of the complete series).
CPRCM mean real cost using decision time τ?PETM
τ?ITM mean time before ht(xt) = y (perfect algorithm)
CICM mean real cost when deciding the first time that ht(xt) = y (perfect algorithm)

Table 2: Quantities measured in the experiments.

Paired t-test statistic C(t)

0.001 0.01 0.05 0.07 0.1

Clustering-based approach vs.
Confidence-based approach

6.6795 5.0266 2.7667 1.3091 -2.4248

Table 3: Results of the paired t-test over the real cost CRCM incurred by each algorithm using synthetic data
sets for the 5 different cost functions C(t) = {0.001, 0.01, 0.05, 0.07, 0.1}.

Paired t-test statistics C(t)

0.001 0.01 0.05 0.07 0.1

Clustering-based approach vs.
perfect algorithm

-12.4027 -16.7838 -16.6993 -14.3468 -11.6398

Confidence-based approach vs.
perfect algorithm

-9.5060 -11.9130 -16.5332 -14.8554 -12.0682

Table 4: Results of the paired t-test over the real cost CRCM incurred by the Clustering-based approach
(respectively, the Confidence-based approach) and the optimal cost CICM for the 5 different cost functions
C(t) = {0.001, 0.01, 0.05, 0.07, 0.1}.

dlePhalanxOC, MoteStrain, PhalangesOC, Proximal-
PhalanxOC, SonyAIBORobotS, SonyAIBORobotSII,
Strawberry, TwoLeadECG. The others were excluded
because of their small sizes (less than 500 time series),
or their large lengths.

Originally, the data sets were provided with two sep-
arate train and test data sets. As we need three sets in
our algorithm (S1, S2 and T ), we combined the train
and test data and then randomly divided the total into
three sets of the same size. The misclassification costs
are set to C(ŷ|y) = +1 if ŷ = y and −1 if ŷ 6= y

To make the early-decision tasks, we set cost func-
tions for delaying decisions as C(t) = d × t, where
d ∈ {0.001, 0.01, 0.05, 0.07, 0.1} ranging the delay cost
from low to high values.

The complete tables of results are available on:

https://github.com/asma-dachraoui/

ECTS-Costly-delaying-decision.

An abbreviated table is given here for the two data
sets: DistalPhalanxOC, ECGFiveDays in Table ??.

Table 6 shows the impact of varying the number of
clusters K (Clustering-based approach) and the num-
ber of intervals N (confidence-based approach) over the
ItalyPowerDemand real data set. Results of the op-
timal time decision and the cost incurred by the two
methods are given when varying k ∈ {∈ 5, 8, 12, 15, 16}
and N ∈ {5, 10}.

One important observation is that, for the clustering-
based method, the number of clusters k chosen heavily
influences the results. By contrast, the number N of
confidence intervals (here N = 5 and N = 10) has no
noticeable effect on the results.
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Figure 3: Histogram showing the number of noise levels for which each method brings a significant gain as
compared to the earliest possible decision.

In order to compare the two methods, we used the
Wilcoxon Signed-Rank test since we had only 11 data
sets over which the performances of the methods were
measured.

C(t) 0.001 0.01 0.05 0.07 0.1

z 63 51 23 10 10

Table 7: Wilcoxon Signed-Rank Test over the real data
sets with α = 0.05 and n− 1 = 10 degrees of freedom.

Table 7 provides the results for the Wilcoxon Signed-
Rank Test over the real-like 11 data sets with α = 0.05
and n − 1 = 10 degrees of freedom. Similarly to
the results obtained using the synthetic data set, the
Confidence-based method is remarkably better than
the Clustering-based method (largely above the signif-
icance level for α = 0.05).

5 Conclusion and future works

In this paper, we revisited the problem of early classi-
fication of time series when delaying decision incurs a
rising cost. Analyzing the work reported in [DBC15],
we have presented a new method that diminishes the
number of parameters to set, while providing a general
scheme to capture generalized patterns in the training
sequences.

We have conducted extensive experiments in con-
trolled situations with synthetic data sets under a wide
variety of parameter values. The method we propose,
even in its baseline implementation, significantly out-
performs the clustering-based approach described in
[DBC15]. This means that the new algorithm is able to
exploit the information in the time series more quickly
and with more precision. This has been confirmed with
experiments using real-like data sets.

It is expected that using the same algorithm with
higher order of time dependencies taken into account
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Quantity Clustering-based approach Confidence-based approach

5 8 12 15 16 5 10

τ?ETM 5.7±1.0 13.0±0.0 14.3±2.5 19.1±2.0 17.8±2.9 16.6±4,3 17.1±3,8

CRCM -0.13 -0.73 -0.76 -0.91 -0.90 -0.907 -0.901

τ?PETM 14.5±7.1 12.2±2.3 10.9±5.7 10.0±7.7 11.8±6.1 17.3±3.48 18.3±3.9

CPRCM -0.64 -0.65 -0.58 -0.48 -0.58 -0.82 -0.85

Table 6: Impact of varying the number of clusters (Clustering-based approach) and the number of intervals
(Confidence-based approach) over the ItalyPowerDemand real data set.

would further improve the performances. These richer
models should indeed be able to extract the useful in-
formation in the training set and new incoming time
series, and come near the optimal decision time and op-
timal cost. However, only very large training sets can
allow a learning algorithm to reach this type of perfor-
mance, by enabling the learning of the large number of
conditional dependencies involved in these higher order
models.
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C(t) η(t) Clustering-based approach Confidence-based approach

τ?ETM CRCM τ?PETM CPRCM τ?ETM CRCM τ?PETM CPRCM τ?ITM CICM

0.001

0.1 5.9±0.4 -0.76 7.1±2.8 -0.76 8.4±8.6 -0.76 8.6±4.8 -0.76 4.0±0.2 -0.77

0.2 5.1±0.4 -0.64 6.8±3.1 -0.65 17.4±14.6 -0.74 10.0±4.5 -0.74 4.2±0.9 -0.8

0.5 9.0±4.2 -0.45 12.2±4.0 -0.66 16.3±10.5 -0.74 18.8±10.0 -0.74 5.1±2.4 -0.87

1.0 14.4±2.3 -0.72 12.3±4.4 -0.6 20.8±10.0 -0.74 23.2±8.3 -0.74 5.3±3.0 -0.92

1.5 16.1±1.5 -0.65 9.6±4.8 -0.27 23.6±13.2 -0.68 30.3±10.4 -0.7 6.5±4.5 -0.96

5.0 10.9±7.1 -0.1 9.3±5.4 -0.01 32.8±5.2 -0.65 42.3±6.1 -0.67 9.7±7.8 -0.96

10.0 13.1±11.5 -0.08 11.1±7.5 -0.02 41.4±5.7 -0.52 45.2±4.4 -0.5 11.4±10.0 -0.95

15.0 10.9±6.7 -0.03 11.4±6.4 -0.02 34.5±16.6 -0.25 39.2±14.9 -0.27 12.2±10.7 -0.95

20.0 12.4±10.6 -0.01 12.6±9.2 0.0 44.5±3.9 -0.24 46.3±3.2 -0.24 11.3±9.9 -0.96

0.01

0.1 4.0±0.0 -0.71 5.5±1.3 -0.71 5.3±1.4 -0.71 6.4±2.2 -0.71 4.0±0.2 -0.74

0.2 5.1±0.4 -0.6 5.9±2.1 -0.59 6.7±1.9 -0.67 7.8±2.7 -0.67 4.2±0.9 -0.77

0.5 5.1±0.6 -0.24 7.0±3.4 -0.27 11.1±4.5 -0.64 12.0±2.8 -0.64 5.1±2.4 -0.83

1.0 6.7±2.5 -0.26 8.1±3.8 -0.33 15.0±4.0 -0.62 16.3±4.6 -0.59 5.3±3.0 -0.88

1.5 7.2±3.8 -0.09 8.8±4.3 -0.13 17.0±9.2 -0.51 19.1±5.5 -0.53 6.5±4.5 -0.9

5.0 6.2±3.7 0.03 8.3±4.2 0.08 26.9±6.6 -0.34 33.3±5.5 -0.33 9.7±7.8 -0.87

10.0 4.2±1.0 0.04 8.5±4.3 0.09 18.1±8.4 0.01 38.1±10.3 -0.08 11.4±10.0 -0.85

15.0 4.9±1.8 0.04 6.4±2.4 0.05 5.4±0.5 0.05 8.3±9.7 0.06 12.2±10.7 -0.84

20.0 4.1±1.1 0.04 6.9±3.9 0.07 9.7±1.6 0.08 10.2±2.0 0.08 11.3±9.9 -0.86

0.05

0.1 4.0±0.0 -0.55 4.5±0.9 -0.53 4.6±0.8 -0.54 5.4±1.4 -0.5 4.0±0.2 -0.58

0.2 5.0±0.2 -0.4 5.3±0.4 -0.38 4.8±0.7 -0.42 5.8±1.8 -0.44 4.2±0.9 -0.6

0.5 5.0±0.2 -0.04 5.5±1.2 0.01 8.4±1.5 -0.3 9.3±1.8 -0.27 5.0±2.0 -0.62

1.0 5.0±0.2 0.04 5.6±1.2 0.02 8.8±2.8 -0.16 10.2±3.3 -0.13 5.2±2.7 -0.66

1.5 5.3±1.0 0.23 5.7±1.3 0.26 7.2±4.1 0.08 11.0±3.3 0.0 6.3±3.6 -0.64

5.0 4.0±0.0 0.2 5.8±2.1 0.29 4.0±0.0 0.2 4.0±0.0 0.2 9.6±7.5 -0.48

10.0 4.0±0.0 0.2 5.2±1.6 0.26 4.0±0.0 0.2 4.0±0.0 0.2 11.0±9.4 -0.39

15.0 4.0±0.0 0.2 4.5±0.8 0.22 5.1±0.7 0.25 5.2±0.6 0.26 11.6±9.9 -0.36

20.0 4.0±0.0 0.2 4.3±0.7 0.22 4.0±0.0 0.2 4.0±0.0 0.2 10.8±9.2 -0.41

0.07

0.1 4.0±0.0 -0.47 4.5±0.9 -0.44 4.6±0.8 -0.45 4.7±1.1 -0.44 4.0±0.2 -0.5

0.2 5.0±0.2 -0.3 5.3±0.4 -0.28 4.6±0.8 -0.33 5.2±1.5 -0.35 4.2±0.9 -0.51

0.5 5.0±0.2 0.06 5.5±1.2 0.12 7.5±1.3 -0.11 8.2±2.1 -0.11 5.0±2.0 -0.52

1.0 4.0±0.0 0.13 5.4±0.8 0.13 7.1±2.1 0.03 8.3±2.6 0.07 5.2±2.2 -0.56

1.5 4.1±0.6 0.28 5.7±1.2 0.38 4.0±0.0 0.27 7.7±3.4 0.23 6.2±3.2 -0.52

5.0 4.0±0.0 0.28 5.4±1.4 0.38 4.0±0.0 0.28 4.0±0.0 0.28 9.2±7.0 -0.29

10.0 4.0±0.0 0.28 4.8±1.0 0.34 4.0±0.0 0.28 4.0±0.0 0.28 9.8±8.0 -0.18

15.0 4.0±0.0 0.28 4.3±0.6 0.3 5.1±0.7 0.36 4.9±0.7 0.34 10.1±8.4 -0.14

20.0 4.0±0.0 0.28 4.2±0.5 0.29 4.0±0.0 0.28 4.0±0.0 0.28 9.7±7.8 -0.2

0.1

0.1 4.0±0.0 -0.35 4.5±0.9 -0.31 4.0±0.0 -0.35 4.1±0.6 -0.34 4.0±0.2 -0.37

0.2 4.0±0.0 -0.18 4.5±0.9 -0.14 4.6±0.8 -0.2 4.6±1.1 -0.2 4.2±0.9 -0.38

0.5 5.0±0.2 0.21 5.3±0.5 0.25 4.7±1.0 0.26 5.4±1.7 0.27 5.0±1.7 -0.37

1.0 4.0±0.0 0.25 5.4±0.5 0.28 5.0±0.0 0.29 6.2±2.0 0.26 5.1±2.0 -0.41

1.5 4.0±0.1 0.39 5.5±0.8 0.53 4.0±0.0 0.39 4.3±1.1 0.39 6.1±3.0 -0.33

5.0 4.0±0.0 0.4 5.1±0.8 0.51 4.0±0.0 0.4 4.0±0.0 0.4 8.1±5.7 -0.03

10.0 4.0±0.0 0.4 4.6±0.8 0.46 4.0±0.0 0.4 4.0±0.0 0.4 7.6±5.6 0.07

15.0 4.0±0.0 0.4 4.1±0.4 0.41 5.0±0.6 0.5 4.6±0.5 0.46 8.0±6.4 0.14

20.0 4.0±0.0 0.4 4.1±0.4 0.41 4.0±0.0 0.4 4.0±0.0 0.4 7.6±5.6 0.05

Table 8: Comparison table: results of clustering approach vs. confidence approach 2 (with trend = 0.07, over
simulated sine data)
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