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Résumé

We study the problem of identifying a class of inter-
est in an unsupervised data set. Assuming that a set
F of score functions is available, of unknown perfor-
mance for the task at hand, we propose a method in
order to select useful functions from the set. Each of
these functions induces a ranking over the data set.

We then show how to combine the base rankings thus
obtained. Experimental results demonstrate that the
combined performance is almost as good, or better,
than the performance of the best, but unknown, score
function in F . In addition, we show, under some sim-
plifying assumptions, how a proper combination of the
base rankings allows one to end up with DNF formulas
involving the selected score functions that converge to
optimal precision and recall with respect to the target
concept, if the capacity of F permits it. Such formulas,
easily interpretable, are very desirable in the explora-
tory context of data mining.

Mots-clef : Unsupervised learning, Ensemble me-
thods.

1 Introduction

Data exploration aimed at discovering interesting
classes of patterns is an essential part of scientific dis-
covery or, more mundanely, of data mining. For ins-
tance, in bioinformatics, many research works look for
the identification of genes that respond to some condi-
tions in the environment, or for finding proteins that
could potentially interact with some given target drugs.
In a different context, the IRS (Internal Revenue Ser-
vice) would like to identify the most likely tax evaders.
More generally, fraud detection is a growing applica-

tion area. In each case, there is one class of interest
that gathers objects the expert is looking for against
the other data points.

In this exploratory setting, it is difficult to come up
with informative functions good at distinguishing bet-
ween the interesting data points versus the non inter-
esting ones. While it might be easy to get candidate
evaluation functions from experts or from libraries of
functions commonly used in statistics or in Machine
Learning, or even to generate such functions automati-
cally, it is difficult in an unsupervised context to assess
their merit. Therefore one is left guessing which one(s)
of these functions to rely on. Additionally, for many
application domains, and especially those where data
is described by a large number of features, it is highly
desirable that the class of interest be described in an
interpretable way. This means that the class of inter-
est should be expressed as much as possible using un-
derstandable features. For most experts, understanding
and the capacity for reasoning imply descriptions that
use combinations of predicates like disjunctive normal
forms (DNF). This allows him/her to gain insight in
what makes the class of interest apart and how this
can be related to the current domain theory, possibly
stimulating some revision of the theory.

In this work, we study the following problem. We
suppose that there exists a set S of m data points from
the input space X with no labels : S = {x1, . . . ,xm}
that has been generated by an unknown mixture of
distributions of which some components, belonging to
P+
X , correspond to the class of interest that we call S+,

and the other components, P−X , correspond to the set
of the remaining data points S−. The sets S+ and S−,
such that S+ ∪ S− = S, are unknown and must be
identified as well as possible.

In addition, we suppose that a set F of evaluation
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functions (or score functions) is available, each func-
tion associating a score to a data point : fi : X → R.
Nothing is assumed a priori about the usefulness of
each function fi ∈ F , and in particular, one does not
know if any given function is “aligned” with the target
concept, that is if it tends to put the data points of the
class of interest toward the top of the induced ranking
over the data set S.

We propose a method for identifying useful score
functions in F , if some exist, in this completely un-
supervised setting. The basic idea is to look at the
correlation between the rankings induced by the score
functions over S and to select functions with a parti-
cular property. We explain how one can use the base
rankings in order to get a combined ranking of the data
points in S with good performances.

We end up by demonstrating, under some simpli-
fying assumptions, how a proper combination of the
base rankings allows one to end up with DNF formulas
that converges to optimal precision and recall with res-
pect to the target concept, if the capacity of F permits
it.

2 The selection of useful evalua-
tion functions

2.1 Principle of the method

In supervised learning with two classes (‘+’ and ‘−’),
one looks for a decision function that provide a good se-
paration between the training points of the two classes.
It is usually possible to vary this decision function in
the input space X by adjusting the value of some para-
meter(s). That way, the function may induce a ranking
over the training set S. If a null empirical risk is ac-
cessible, the ranking put all the positive data points
before (or after) all the negative ones, and the ROC
curve that can thus be computed has an AUC (Array
Under the Curve) of 1.

If a combination of functions is employed, as in boos-
ting, then one tries to use functions that, individually,
induce good rankings of the training set (subject to
the bias of the space of hypothesis functions F and to
possible additional regularization constraints). The re-
gions in the input space X where the positive examples
lie therefore correspond to regions where several base
functions agree on their ranking of the examples. I.e.
in these regions, the selected score functions have put
the examples towards the top of their ranking of the
elements of S.

We draw inspiration from that same idea in the

context of unsupervised learning. As described in the
previous section, we assume that a set F of evaluation
functions exists, and we want to select the ones that
are such that they place the positive data points at the
top of their ranking. The only thing is that now the
data points come without labels. We therefore have to
find another lever.

The key assumption is that the data set at hand
exhibits special regularities, otherwise it would not be
of interest to any expert. Therefore, if one finds that
there exists some match between the rankings of two
evaluation functions over the data set S that usually do
not exist over random data sets (of the same number
of elements), one can suspect that the match is due
to some specific regularity in the data set. This is the
basis of the proposed approach.

We now have to settle on a correlation measure bet-
ween evaluation functions, or rather between rankings.

2.2 Correlation measures

A measure of correlation between rankings estimates
how much information about the rank in S of an
example x by a given evaluation function fi provides
about the rank of the same example by another func-
tion fj . Two measures are specially used : the Spear-
man Rank-Order Correlation and the Kendall rank
correlation coefficient. In the context of Information
Retrieval, the Discounted cumulative gain (DCG) and
its normalized version (NDCG) are equally very much
employed [?] (see [?] for a theoretical study). On advan-
tage of the NDCG is to weight the correlation measure
in function of the rank, that is to favor the objects that
are ranked at the top of the rankings.

However, when one is considering only two classes of
objects, with no hierarchy within each class, taking the
rank into account is useless, and can even be mislea-
ding. This why we introduce another correlation func-
tion which is close the Jaccard index.

In the following, topin will be used to denote the n
examples of S that are top ranked by the evaluation
function fi. Similarly, ∩i,jn will denote the intersection
of the topn elements by two evaluation functions fi and
fj : ∩i,jn = topin∩topjn. Thus, if topi5 = {a, b, c, d, e} and

topj5 = {g, a, f, e, d}, then ∩i,j5 = {a, d, e}.
We propose to measure the correlation between two

evaluation functions on a set S by considering the va-
lues of ∩i,jn when 1 ≤ n ≤ m if Card(S) = m.

This measure is inspired by the hypergeometric law
which gives the probabilistic law obeyed by the size
of the intersection of two independent draws without
replacement of n elements in a set of size m. The hy-
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pergeometric law gives :

p(| ∩i,jn | = k) =

(
n
k

)
·
(
m−n
n−k

)(
m
n

)
For example, two independent draws of 500 elements
among 6,000 have a maximal probability of sharing 42
elements. On can notice that k/n = n/m (e.g. 42/500
≈ 500/6000).

If the size of the intersection of two draws differs
significantly from the most probable value given by the
geometrical law, then it is unlikely that the draws are
independent. In on extreme case, one draw is a copy
of the other one, and then : | ∩i,jn | = n, (∀n ≤ m). At
the other end of the spectrum of possibilities, one draw
avoids as much as possible to draw the same elements
as the other one. For instance one ranking is the inverse
of the other one. Then the size of the intersection is
0 up to n = bm/2c, before rising as 2(n−(m/2))

n (see
Figure 1). There exists therefore a whole spectrum of
intersection laws between these two extreme cases.

It is essential to notice the special curve that one
would obtain if two perfect base evaluation functions
were selected, that is if they sorted the ‘+’ elements
of S at the top of their ranking, but were otherwise
uncorrelated. This is depicted in Figure 1 on the right.
The curve | ∩i,jn |/n is thus intrinsically related to the
detection of an AND function that could describes the
‘+’ class.

In the proposed method, one tries to find out the
interesting evaluation functions by measuring the dif-
ference in the correlation of their rankings of the ele-
ments in S as compared to the mean value of the cor-
relations measured on random samples S0 of same size.

Figure 2 depicts a typical difference. Here the eva-
luation functions are ANOVA and Relief [?] and the
data corresponds to 6,400 genes. The task was to find
out if some genes were sensitive to low radioactivity le-
vels. The upper curve | ∩i,jn | shows the correlation over
the data, while the lower curve with confidence inter-
vals is obtained by computing the intersections | ∩i,jn |
over random samples S0 (here 100).

The difference in the measured correlations can be
more or less accentuated depending on the difference in
the classes ‘+’ and ‘−’. There can be an overcorrelation
peak that can be indicative of the number of positive
objects in S (see Figure 3).

2.3 A theoretical analysis

In this section, we develop a simple model in order to
allow us (in Section 5) to devise a strategy for discove-
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Figure 2 – Correlation curves measured on the data
set (upper curve) and on random samples (lower curve
with confidence intervals).
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Figure 3 – Correlation curves between rankings of an
artificial data set of 1,000 elements for various numbers
of elements of class ‘+’, here 50, 200 and 400. The peaks
are accentuated on the right graph which corresponds
to an easier problem.

ring interpretable expressions of the hidden regularities
in the data.

We start by assuming that the evaluation functions
are characterized by a positive (or negative) propensity
to put the elements of class ‘+’ at the top of their
ranking. This propensity can be modeled by a ROC
curve, of which one of the simplest form is given in
Figure 4 [?]. When 1−εy > εx the function is positively
aligned with an ideal function that would sort the ‘+’
elements before the ‘−’ ones, and the AUC is > 0.5.

In the simple analysis reported here, we suppose that
we consider two evaluation functions fi and fj of the
same strength (defined by εx and εy), that is they share
a common ROC curve. The theoretical study with func-
tions exhibiting different ROC curves does not change
qualitatively the results.

Let us compute the size of the intersection of the
topn elements : | ∩i,jn |. Let x be the number of false
positive elements. Therefore, x varies on the FP axis.
Let m+ be the number of positive elements in S and
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Figure 1 – The curve | ∩i,jn |/n function of n. Two independent draws should approximately result in the
diagonal law. (Left) Two maximally correlated draws give | ∩i,jn |/n = 1 (∀n). Two draws maximally inversely
correlated give the red curve at the bottom. All possible behaviors fall between these two extreme curves. (Right)
The characteristic curve for two rankings from uncorrelated but perfectly informed evaluation functions.
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Figure 4 – (Left) The simple model of the ROC curve
used in the theoretical analyses. (Right) The resulting

curve of the most probable correlation size
|∩i,j

n |
n .

m− be the number of negative elements. Then, we have
two phases to consider.

1. 1st phase : x ≤ εx. One finds : n = xm− +
1−εy
εx

xm+

| ∩i,jn | = x2m− +
( 1−εy

εx

)2
x2m+

(1)

giving, for the first part of the curve, the equation :

| ∩i,jn |
n

=
x2m− +

( 1−εy
εx

)2
x2m+

xm− +
1−εy
εx

xm+

= x
m− +

( 1−εy
εx

)2
m+

m− +
1−εy
εx

m+
(2)

For the special value x = εx (point P ), we get :{
n = εxm

− + (1− εy)m+

| ∩i,jn | = ε2xm
− + (1− εy)2m+

(3)

corresponding to the value on the y-axis :

| ∩i,jn |
n

=
ε2xm

− + (1− εy)2m+

εxm− + (1− εy)m+
(4)

2. 2nd phase : εx < x.
n = xm− +

[
(1− εy) +

εy
1−εx (x− εx)

]
m+

| ∩i,jn | = x2m− +
[
(1− εy) +

εy
1−εx (x− εx)

]2
m+

(5)
giving, for the second part of the curve, the equa-
tion :

| ∩i,jn |
n

=
x2m− +

[
(1− εy) +

εy
1−εx (x− εx)

]2
m+

xm− +
[
(1− εy) +

εy
1−εx (x− εx)

]
m+

(6)

These equations give the most probable value for
|∩i,j

n |
n , as shown on the right hand side of Figure 4.

While computed from an idealized model, this curve is
in good accordance with empirical observations.

2.4 The algorithm

The selection of the useful base scoring functions is
done according to algorithm1. First, the functions of
F are ranked according to their degree of surcorrela-
tion as measured by the difference of correlation on
the data set S and the mean correlation computed on
the random samples S0. The functions that have their
surcorrelation with at least another function above a
given threshold τmin overcor are retained in the set F ′.

It is then highly desirable to keep only the functions
that are as decorrelated as possible among themselves,
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the idea being to get a basis of functions. Ideally, one
would compare each function in F ′ to all others and
retain only those that have a minimal surcorrelation
with their counterparts, and then create a minimal
set of such functions. This would necessitate a costly
constraint satisfaction phase. The current implementa-
tion of the algorithm simplifies the problem by retai-
ning the functions for which the sum of the surcorrela-
tions with all other functions in F ′ is above a threshold
τsum overcorr.

Algorithm 1: Selection of “good enough” base sco-
ring functions

Input: The data set S
The set F of the base scoring functions

Output: A subset F ′′ ∈ F of base functions

Generation of N random samples S0 ;

forall the pairs of scoring functions (fi, fj)(i6=j)
∈ F do

compute the over-correlation of (fi, fj) on
S compared to the mean correlation on the
samples S0

end forall

Select the scoring functions fi ∈ F with
over-correlation ≥ τmin overcor : producing F ′

Initialization : F ′′ = ∅
forall the fi ∈ F ′ do

if
∑
j 6=i overcorr(fi, fj) ≥ τsum overcorr then

Put fi in F ′′

end forall

3 Experimental studies

These experiments address the question as to which
extent the proposed method is able to select relevant
evaluation functions in F , that is functions which tend
to put the ‘+’ elements before the ‘−’ elements in their
ranking of S. In other words, if we were to know the
class of the elements in S and thus be able to compute
ROC curves, would the selected functions have an AUC
> 0.5 ?

In order to test for this, we have realized experiments
with artificial data. The data where generated using
two probability distributions over the input space Rd
(here d = 20) : distribution P+

X for the ‘+’ instances
and distribution P−X for the ‘+’ instances. In the ex-

periments reported here we have used two Gaussian
distributions with means separated by a euclidian dis-
tance of 3. The difficulty of the task was controlled by
adding noise of varying standard deviation σ to the
data points (σ = 1.5, 2.5, 3.5 and 4.5).

The relative proportion of the class ‘+’ to the to-
tal number of elements m was set to varying values :
40/320 = 1/8 ≈ 12%, 80/320 = 1/4 = 25%, 120/320 =
3/8 ≈ 37% and 160/320 = 50%.

For the set F of evaluation functions, we used known
methods such as ANOVA and Relief, and we build
variations over these functions, for instance by varying
the distance used (e.g. `0, `1, and up to `5) or the num-
ber of neighbor elements taken into account (specially
in Relief) or by varying the coordinates of the data
points in Rd that were taken into account by the func-
tions. We also built functions of our own, relying on
the computation of various “bizarre” statistics over the
coordinates of the data points. In the reported experi-
ments, we used 24 such functions, to which we added
20 “opposite” functions that returned just the oppo-
site of one the previous 24 functions (these functions
were thus supposed to be negatively aligned, to some
extent, with the ideal sorting function). And finally, we
added a random evaluation function to the set F in or-
der to test if it would effectively be eliminated by our
algorithm. We therefore considered 45 functions in F .

In each experiment, a sample S is generated as ex-
plain above, and 100 random samples (of the same size)
are used in order to estimate the a priori correlation
between the evaluation functions.

Table 1 reports the minimal AUC (aucm) and the
maximum AUC (aucM ) for the functions in F . Like-
wise, it reports the minimal AUC (aucm), the maximal
AUC (aucM ) and the mean AUC (auc) for the func-
tions selected by the method : in F ′′. Finally, the last
column gives the AUC obtained by combining the re-
sults of the evaluation functions selected in F ′′ (see
Section 4 for an explanation).

The first thing to notice is that, in all cases, the worse
selected function has an AUC > 0.5, which means that
the method is able to eliminate all evaluation functions
negatively correlated or uncorrelated with the ideal
function. On the other hand, it might also happen that
the best evaluation function of F is not selected in F ′′
(see for instance the line σ = 4.5 andm+/m = 80/320).
This happens when this unknown best function is not
sufficiently overcorrelated with another function in F .

In addition to the results reported in Table 1, the
experiments show that the number of selected func-
tions in F ′′ tends to decrease when the difficulty of
the problem increases (increasing value of σ). Specifi-

5



Before selection After selection
σ m+

m aucm aucM aucm aucM auc AUC comb

1.5

40
320 0± 0 1± 0 0.92± 0.03 1± 0 0.98± 0.01 1± 0
80
320 0± 0 1± 0 0.87± 0.06 1± 0 0.97± 0.01 1± 0
120
320 0± 0 1± 0 0.84± 0.07 1± 0 0.95± 0.01 1± 0

2.5

40
320 0.02± 0.01 0.98± 0.01 0.94± 0.03 0.98± 0.00 0.96± 0.02 0.98± 0.01
80
320 0.03± 0.01 0.98± 0.01 0.85± 0.05 0.98± 0.01 0.91± 0.02 0.97± 0.01
120
320 0.03± 0.01 0.98± 0.01 0.76± 0.03 0.98± 0.01 0.88± 0.02 0.97± 0.01
160
320 0.03± 0.01 0.98± 0.01 0.73± 0.04 0.97± 0.01 0.85± 0.02 0.95± 0.01

3.5

40
320 0.09± 0.02 0.91± 0.02 0.75± 0.06 0.90± 0.03 0.83± 0.01 0.90± 0.03
80
320 0.09± 0.02 0.92± 0.02 0.65± 0.05 0.92± 0.02 0.79± 0.02 0.90± 0.02
120
320 0.09± 0.02 0.91± 0.01 0.64± 0.04 0.91± 0.01 0.77± 0.02 0.89± 0.02
160
320 0.10± 0.01 0.91± 0.02 0.63± 0.03 0.91± 0.02 0.76± 0.02 0.88± 0.02

4.5

40
320 0.13± 0.02 0.86± 0.02 0.67± 0.03 0.86± 0.02 0.76± 0.02 0.86± 0.02
80
320 0.15± 0.02 0.85± 0.02 0.65± 0.03 0.84± 0.03 0.75± 0.02 0.84± 0.03
120
320 0.15± 0.02 0.84± 0.02 0.62± 0.06 0.84± 0.02 0.73± 0.03 0.84± 0.02
160
320 0.15± 0.01 0.85± 0.01 0.61± 0.03 0.85± 0.01 0.72± 0.02 0.83± 0.03

Table 1 – Experimental results in function of the noise parameter σ and the proportion of the class ‘+’.

cally, |F ′′| ≈ 10 for simple problems (σ = 1.5), whereas
|F ′′| ≈ 5.5 for difficult problems (σ = 4.5). This is due
to the fact that the noise in the data tend to decrease
the difference of correlation as measured on S and on
the random samples S0.

Finally, we made experiments where F contained
only evaluation functions of AUC ≤ 0.5. Then, in ap-
proximately 60% of the experiments, the method select
between 2 and 4 functions, which therefore tend to put
negative examples before positive ones. Interestingly,
it suffices that 3 or 4 functions of AUC > 0.5 be put in
F to prevent this behavior to happen. This is because
there is a dissymmetry between class ‘+’ and ‘−’, the
last one being generally supposed to represent a majo-
rity of the data set S.

4 A method for combining re-
sults

Each of the selected base function fi ∈ F ′′ outputs
a ranking over the elements x of the set S ordered
by decreasing value of fi(x). It is therefore possible to
associate each element x with a vector of coordinates
(fi(x))fi∈F ′′ (the scores are normalized in (0, 1)).

In this redescription space Φ(X ), the data points of
class ‘+’ tend to be aligned around the diagonal since
they are points for which the selected base functions
are correlated, and they are distant from the origin

because they have high values of the evaluation func-
tions (see Figure 5). Therefore, one method to sort the
‘+’ points from the ‘−’ ones is to project the points in
Φ(X ) over the principle diagonal and to use a threshold
to decide the class of the examples. This method gives
the same weight to all selected base function. In our
experiments, we have weighted the functions according
to their total surcorrelation with the other functions of
F ′′. We use an exponential function of this surcorrela-
tion. This amounts to project the data points over a
biased diagonal of Φ(X ).

While this method gives good results on empirical
evaluations (see Table 1 last column), it does not lead
to easy to interpret regularities. The method developed
in the next section aims at tackling this challenge.

5 Towards interpretable combi-
nations of selected features

Assuming that there exists a class of m+ objects
of interest from a distribution P+

X and a class of m−

other objects in the data set S from a distribution P−X ,
is there any hope of identifying the objects of the class
‘+’ ? It all depends on the number and properties of
the evaluation functions contained in F .

As a start, let us suppose that a pair of functions
(fi, fj) exists in F such that each function is somewhat
“aligned” with the ideal function that would separate
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Figure 5 – Data points of S are projected from the input space X to a redescription space Φ(X ).

the positive objects from the other. This translates in
the fact that both fi and fj have a AUC > 0.5 as mea-
sured with respect to the unknown classes of objects.
We will further assume, as in Section 2.3, that their
ROC curve exhibit the simple profile of Figure 4 on
the left.

One can compute the ROC curve obtained when

considering the intersection
|∩i,j

n |
n of the topn of each

function.
Using the equations of Section 2.3, one obtains :

For x ≤ εx :

| ∩i,jn | = x2m−︸ ︷︷ ︸
FP

+

[
1− εy
εx

]2
x2m+︸ ︷︷ ︸

TP

(7)

and for x > εx :

| ∩i,jn | = x2m−︸ ︷︷ ︸
FP

+

[
(1− εy) +

εy
1− εx

(x− εx)

]2
m+︸ ︷︷ ︸

TP

(8)
As an illustration, Figure 6 shows the ROC curve

of each score function and the ROC curve when using
| ∩i,jn |.

What is interesting is that while the AUC of the

function
|∩i,j

n |
n is not much larger than the AUC of each

base function, its slope in the left part of the curve is
much steeper. That means that the precision in this
part seems very much improved. Does the theoretical
analysis confirms this ? Let us see how the precision and
recall evolve when one goes from a random selection of
objects in S (stage 0), to using the base score function
(stage 1), up to using the function | ∩i,jn | (stage 2).

1. Stage 0. We suppose that a fraction η of the m
objects are randomly selected in S and are assi-
gned to the class ‘+’. We let : m− = αm+, with

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
TP

FP

εx = 0.3

εy = 0.2

Figure 6 – In red (the top curve starting at FP = 0.3),
the ROC curve of the two base score functions fi and
fj . In blue (the top curve before FP ≈ 0.3), the ROC

curve of the function
|∩i,j

n |
n when n varies from 0 to m.

α ≥ 0 and εx = β (1 − εy) with 0 ≤ β < 1 (note
that 0 ≤ β < 1 entails an AUC > 0.5 while β > 1
entails an AUC < 0.5). Then, we get the precision
(prec.) and recall :

prec. =
TP

TP + FP
=

ηm+

η(m+ +m−)
=

1

1 + α

recall =
TP

TP + FN
=

ηm+

m+
= η

2. Stage 1. We look at the point on the ROC curve
that maximizes precision and recall : x = εx on
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Figure 4.

prec. =
(1− εy)m+

(1− εy)m+ + εx αm+

=
1− εy

1− εy + αβ (1− εy)
=

1

1 + αβ

recall =
(1− εy)m+

m+
= 1− εy

3. Stage 2. We now use the function | ∩i,jn |, again at
the point with best precision and recall.

prec. =
(1− εy)2m+

(1− εy)2m+ + εx2 αm+

=
(1− εy)2

(1− εy)2 + αβ2 (1− εy)2
=

1

1 + αβ2

recall =
(1− εy)2m+

m+
= (1− εy)2

It is apparent that at each stage one looses on the
recall, meaning that a smaller part of the class ‘+’ gets
recognized. At the same time, the precision increases,
and this all the more that β = εx/(1−εy) gets smaller,
which corresponds to better base score functions.

It can indeed be shown that, assuming that the base
score functions are independent (a priori uncorraletad),
one can further consider higher order intersections of
the topn ranked objects by each base functions, getting
for order k intersections :

prec. =
(1− εy)km+

(1− εy)km+ + εxk αm+
=

1

1 + αβk

recall =
(1− εy)km+

m+
= (1− εy)k

For a precision at least prec, one should use inter-
sections of order k, with :

k ≥
log 1−prec

α prec

log β

For instance, if one wants a precision of at least 0.9,
with twice as much negative objects than positive ones :
α = 2 and εx = β (1 − εy) (corresponding to an AUC
= 1

2 [1 + (1 − β)(1 − εy)]), with β = 0.5, one should
consider intersections of order at least k = 4.

By taking different and independent such intersec-

tions of order k, denoted | ∩(k)n |, one can increase the
recall. Taking the union of N of these subsets gives a
set of size approximated by :

l = N |∩(k)n |−
(
N

2

) | ∩(k)n |2
m

+

(
N

3

) | ∩(k)n |3
m2

+O(|∩(k)n |4)

To first order then, it suffices to take N subsets to
multiply the recall by N .

As an illustration, suppose that we have a sufficient
number of base score functions selected in F ′′ by our
selection algorithm, such that for these functions, εy =
0.8, and β = 0.5 which means that εx = 0.4 and the
AUC = 1

2 [1 + (1 − β)(1 − εy)]) = 1
2 [1 + (1 − 0.5)(1 −

0.2)]) = 0.7. In addition, suppose α = 2 (twice as much
objects of the class ‘-’ than objects of the class ‘+’),
then, in order to get a precision of 0.9 and a recall of
0.9 also, we need to consider intersections of order 4 as
seen above.

Since, | ∩(k)n | ≈ εxkm− + (1− εy)km+ = εx
kαm+ +

(1− εy)km+ = m+[(1 + 1
1+2k−1 )(1− εy)k and we want

to cover 0.9 m+ objects of the class ‘+’, we need :

0.9m+

m+[(1 + 1
1+2k−1 )(1− εy)k]

(9)

intersections of order k : ∩(k)n . With the values conside-
red, this gives approximately 2. In other words, in this
example, a disjunction of two conjunctions, each one
of them involving the intersection of the topn of four
score functions, will provide a subset of objects, with
recall ≈ 0.9 and precision ≈ 0.9.

Let us recap the lessons from this section. In
principle, assuming that the initial set of score func-
tions is sufficiently well provided with functions of well-
behaved ROC curves (characterized by the parameters
εx and εy), it is possible to find disjunctions of inter-
sections of order k such that a given level of recall and
precision be met.

Each intersection ∩(k)n involves the topn ranked ob-
jects by the score functions considered. The value of n
actually corresponds to a threshold which defines what
is recognized as a ‘+’ object by the score function and
what is recognized as a ‘−’ object. In this way, we can
consider a score function together with a threshold as a
predicate. For instance, we could have the ANOVA(150)

predicate which retain as positive the objects that have
a value above the value obtained by the 150th element
of S.

Figure 7 shows how, in the space of the rankings
by two selected score functions (here the functions
ANOVA and RELIEF2−2), it is possible to isolate per-
fectly the positive data points from the negative ones,
using the AND of the “predicates” ANOVA(80) and
RELIEF2−2−(80). It is apparent that the ranks given
by the two scoring function are uncorrelated within
each class of objects, while they agree to distinguish
between the two classes.
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Figure 7 – The separation (here perfect) between
the class ‘+’ (red dots in the lower left part) and the
class ‘−’ (blue dots in the upper right part realized by
the AND(ANOVA(80), Mean Diff(80) Median Diff(80))
function.

The method proposed in this paper has thus the po-
tential to detect relevant evaluation functions and to
find combinations of them in order to reach any desi-
red level of precision and recall if the set of functions F
allows it. In addition, by turning the number of top ran-
ked elements for each evaluation function into a thre-
shold, it is possible to obtain predicate functions and
thus to transform the combination into a DNF formula.

The method is therefore in principle able to “invent”
new predicates and to produces expressions, DNF, that
are conducive to easier interpretation.

However, this quite tempting possibility remains to
be confirmed before a practical tool ensues. There are
indeed several questions that need to be solved. First,
and foremost, it is necessary to start with a rich enough
set F of evaluation functions. Experts can often pro-
vide ideas for such functions. One can then construct
variations around these “seed” functions. This is what
we have done in our experiments, for instance by va-
rying the distance, the attributes, and the number of
neighbors in the RELIEF evaluation function. None-
theless, this might still be insufficient to get enough
interesting and uncorrelated functions. A second diffi-
culty, linked to the previous one, is that the computa-
tional complexity of the method is of the order O(|F|2,
that is a quadratic function of the number of functions
considered. This is because the correlations between all
pairs of functions need to be computed. A third diffi-
culty lies in the fact that the formula we have given
for the precision and recall, require that estimates of
the values of α, that is the proportion of negative ob-

jects wrt. the positive ones be known. Likewise, one
needs also to estimate the characteristics of the base
score functions used, that is the parameters εx and εy.
While, we have some ideas as to how to do this, they
remain to be validated.

6 Related works

Ensemble methods have first been studied in the
context of supervised learning (see [?, ?] for compre-
hensive studies). It is indeed easy to estimate the per-
formance of the base decision functions with labeled
data, using a validation set or cross-validation for ins-
tance. Identifying relevant base functions in the context
of unsupervised learning is quite a lot murkier. Each
potential base function is (e.g. clustering method) is
inevitably biased towards some type of regularity in
the data, but how can someone measure its adequacy
for a given problem ?

Existing works on collaborative clustering do not ad-
dress this question in all its generality. In fact, they
assume that the available base methods are somehow
appropriate for the task at hand. The main concern is
rather to reduce the instability of the methods, mea-
ning the variations in the learned results that can be
induced by variations in the data. For this, various au-
thors [?, ?, ?] suggest to combine, often by a simple
vote, the results of various unsupervised techniques. If
indeed, generally, the instability is thus reduced, the
final result is nonetheless not guaranteed to be good.
This is why recent works have put forward the idea
of selecting a priori the learned results depending on
their quality and diversity. However, these very same
criteria expresse themselves subjective biases, and the
problem is not solved.

7 Conclusion and future works

In this paper, we addressed the question of develo-
ping an ensemble method in the context of 2-classes
clustering. Ensemble methods start from an existing
hypothesis space, or pool of base decision functions and
must solve two problems : first, to identify relevant de-
cision functions for the task at hand, and, second, to
combine these functions in order to get a final decision
function. In contrast to supervised learning, where la-
beled data makes it possible to assess the value of de-
cision functions, in unsupervised learning these assess-
ments are much more problematic. This is why existing
approaches in collaborative unsupervised learning as-
sume that the base methods are somehow appropriate.
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The proposed method departs from this perspective.
By measuring the difference of correlation of pairs of
base evaluation functions on the data set S and on ran-
dom ones, it offers a tool to select base functions that
are sensitive to the hidden regularities of the data. The
empirical evaluation of the method confirms, thus far,
its worth at identifying relevant base functions. This is
important in applications, since this allows the user to
be less concerned with the exquisite design and tuning
of good evaluation functions. It suffices to provide the
method with a pool of reasonable (or not) evaluation
functions and variants of these.

Our work also tackles the issue of the combination
of base functions. In a first approach, we have used a
rather traditional technique that weights the base func-
tions depending on their degree of surcorrelation with
other base functions. The performances thus empiri-
cally obtained are quite good, always at the level of
the best base function in the initial set F . We expect
that using larger sets F , this type of combination could
yield even better results.

However, a theoretical analysis points to another
very alluring idea. By looking at the formula for pre-
cision and recall when considering intersections of the
topn ranked elements by base functions, it appears that
one could hope for two benefits at once. The first is
that, provided the set F of base functions is “rich” en-
ough, it is theoretically possible to reach as high a pre-
cision and recall as one desires. The second is that this
involves combinations of base functions of the form of
DNF, which naturally lead to easier interpretations by
the experts. The whole approach is still tentative and
has strong links with the notoriously difficult problem
of predicate invention. We have underlined the hurdles
that remain to be solved in order to get a fully ope-
rational method. But we hope this first foray in this
direction will stimulate further works that will over-
come the problems pointed out and maybe bring about
a new set of interesting tools for ensemble methods in
the unsupervised setting.

Acknowledgments. Part of this work has been sup-
ported by the French ANR project “Coclico” (2013-
2016).
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