Analogy
as
Minimization of Description Length

Antoine CORNUEJOLS
Inference and Learning Group
Laboratoire de Recherche en Informatique (L.R.I.)
Building 490 University of Paris-Sud
91405 ORSAY Cédex
email: antoine@lri.fr  phone: (33 1) 69 41 63 00

February 22, 2021

Abstract

If analogy is indeed a form of induction, it is a very special one in that (i)
it works from the specific to the specific apparently without relying on vast
numbers of observations, d (ii) it does not necessarily involve general rules
that would apply both to the ‘source’ of the analogy and to its ‘target’. It thus
appears quite remote from the realms of statistics. A survey of the current
computational approaches to analogy shows that they all embrace the “anal-
ogy as a matching proces” perspective differing only on constraining factors
and search mechanisms. These matching-based theories gives ways to some
dissatisfaction however. This paper proposes a new point of view on analogy
that offers possible answers to these queries. Analogy is seen as a realization
of an economy principle that minimizes the complexity of the transforma-
tion from the source to the target as measured by description length. These
description lengths in turn are dependent upon statistical properties of the
concepts and abstractions used to account for the analogy. This is where
learning can take place so as to facilitate further analogies in the same do-
main. Tests on a classical domain task confirm that the application of this
principle correctly predicts the best analogies.

Content Areas: Analogy, Inductive Learning, Minimum Description Length Prin-
ciple.



1 Introduction: analogy, induction and computa-
tional models

1.1 Analogy and induction

Peculiarities of analogy that make it different from other, traditionally considered
as more typical forms of induction, are that (i) it works from the specific to the
specific apparently without relying on vast numbers of observations, and (ii) it
does not necessarily involve general rules that would apply both to the ’source’
of the analogy and to its ’target’. Models of analogy must threrefore propose
mechanisms allowing for specific to specific inferencing and this possibly between
different domains. Analogy thus appears quite remote from the realms of statistics.

1.2 Current models of analogical thought

A survey of existing computational studies shows that for solving the specific to
specific inference problem, the hypothesis of analogy as a mapping process between
the representations of the analogues has been unanimously adopted following [?].
Recognizing then that a combinatorial number of possible mappings between graph-
representations exists, the problem have become one of taming this complexity to
allow focussing on relevant and most promising ones. To this effect, a number of
intuitively appealing hypotheses have been made, that we have no place to de-
scribe here (see [?7, 2,27, 7,7, 7, 7, ?7]). However these models still leave place for
dissatisfaction.

First, there is no formal ground for chosing the analogy as mapping paradigm.
Second, all models mentioned so far are highly dependent on the a priori designed
representation scheme (see [?, ?] for critics and illustrations). The latter is a se-
rious drawback, even more so that at the same time it seems quite undisputable
that analogy is not only mapping between representations but also and foremost
the making of these representations appropriate for a given context through percep-
tion. Finally, it has not been proved that existing models can account for observed
properties of analogy. It seems that a well-founded theory of analogy must explain
these properties.

1.3 Properties of analogy

We list here six properties of analogy that we feel are telltale symptoms and ac-
cordingly important test beds for any would-be theory of analogy.

1. Analogy is pervasive in cognition.
2. Abstract analogies are generally preferred over more litteral ones.

3. There is generally a good agreement in the ratings of analogies among different
people.



4. Analogy is non involutive (f o f # Id). In other words analogy is non sym-
metric. One can readily find examples where transferring properties from
the source to a target and then back from the initial target to the initial
source, brings discrepencies between the initial properties of the source and
the transferred back ones.

5. Analogy is non idempotent (f o f # f). If A is used to infer analogically
properties about B, and then B is used to augment the knowledge about C,
the result may differ from the one obtained by directly using A analogically
on C'. It must be noticed here that properties 4 and 5 call into question the
feasibility of Case Based Reasoning where the case library is supposed to grow
incrementaly with the system’s history. Indeed it follows from 4 and 5 that
inconsistent case bases might be created.

6. Analogy making can be improved with practice. At least some domain-dependent
forms of analogical reasoning can be learned.

This is in part while trying to account for these properties that the point of view
on analogy reported in this paper has gradually emerged. The overall spirit of this
view is presented in the next section. Then, in section 7?7, its formal foundations
are reviewed and explained. Section 77 illustrates the application of this approach
to examples drawn from a classical analogy domain. Finally, the conclusion sec-
tion sums up the current findings and underlines the deep relationships between
inferencing and statistics.

2 Analogy as an economy principle

2.1 The classical schema of analogy

We limit ourselves here to one component of analogical reasoning: the transfer of
some properties of the source to the target, ignoring the problem of conjuring up in
mind a good analogue as well as the difficulties related to the validation and tuning
of the result in the target domain. We will assume for the time being that one can
legitimately isolate such components.

Analogy making is, in part, perceiving some aspects of the structures of two sit-
uations _the essences of those situations, in some sense_ as identical. By perception,
we mean here the process by which some conceptual primitives and structures are
summoned up and used in order to make sense of the raw data and to represent
what is judged relevant in them. When perception is tuned to analogy making, the
conceptual structures that come up amount to the filtering of the saillant part of
the data that make them analogous.

In a way, one might consider the essences of the analogues as the necessary
information that, when provided, allows one to easily transform part of one situation
into part of the other, these parts being the relevant ones in the context of analogy.
But how to bring these essential aspects out 7
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Suppose we try to transform, by way of symbolic manipulations, one analogue,
the source, belonging to universe Uj, into the other, the target, belonging to uni-
verse Us. We know that if we find an economic transformation means, there are
reasons to believe that we hit on an appropriate information supply, that is some
essential commonalties between the analogues.

In the classical schema (see figure ref fig-ana-classic) where (S; = R;) is the
source and Ss is the target situation or problem with Ry being the unknown, analogy
making is trying to find ways of representing S1, R1, and S5 so that (i) an economic
transformation « using these representations exist between S7 and Ss, and (ii) f1
the relevant dependency S; = R; be represented.

It is then a simple matter to translate 5y into 82 by way of the mapping (s =

o)

U,

Figure 1: The classical schema of analogy. The source in universe U; is translated
into the target in universe Us by way of the transformation . The simplest the
transformation «, the closest look the source and the target.

2.2 Analogy and Kolmogorov complexity

In its naive version, induction consists in drawing general rules from specific ob-
servations. These general rules or hypotheses are subject to three constraints: (i)
to be more general than the original observations, otherwise they have little value;
(ii) to be testable so that later observations may falsify them; and (iii) to inspire
confidence, that is to be most probable given the observations.

A general principle that dates back at least to William of Ockham (12907-
13497) seems to satisfy these three criteria to the best. This is the Principle of
Simplicity which asserts that the “simplest” hypothesis or explanation is the most
reliable . During the last thirty years, “simplicity” has been equated with “shortest
effective description”, so that if there are alternative explanations for a given body
of observations, one should select the one with the shortest description. In the first
formalization ([?, 7, ?]) called algorithmic or Kolmogorov complexity, hypotheses
were considered as the effective computable procedures able to generate as output
the observations. The best hypothesis was thus the shortest procedure as measured
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with the Turing machine encoding scheme, that is the one that allowed maximum
compressibility of the data.

We are going to use the same principle here. The conceptual primitives and
structures used in the perception and representation of the analogues willstand for
the hypotheses, and the raw data will stand for the observations. This way, we will
be able to compare the quality of various analogies between some source and target
by measuring the corresponding Kolmogorov complexities. The analogies with the
lowest algorithmic complexities will be deemed the best.

As has been noted in the introduction, analogy is a special form of induction
in which the data consist in a single compound object: the source and its target.
It is therefore a great advantage for our purpose, and one that distinguishes it
from statistical approaches, that algorithmic complexity applies equally well to sets
of observations and to single objects. However, compressibility through Turing
machines is not a method that is to be used lightheartedly in Artificial Intelligence.
Indeed, one usually looks for explanations expressed within some model classes,
and not explanations expressed as abstruse bit strings. This is where the Minimum
Description Length Principle (M.D.L.P.) ([?, ?]) intervenes.

2.3 The Minimum Description Length Principle (MDLP)

Rissanen starts from the observation that scientific theories often involve two steps.
First, the formulation of a set of possible alternative hypotheses (for which he does
not offer any mechanism), and, second, the selection of one hypothesis as the most
likely one. Rissanen proposes that this selection mechanism obeys the Minimum
Description Length Principle which states that:

The best theory to explain a set of data is the one which minimizes the
sum of

e the length, in bits, of the description of the theory; and,
e the length, in bits, of data when encoded with the help of the
theory.

There is a deep relationship between the MDLP and the Bayesian approach. In-
deed, one can derive the former from the latter by observing that from Bayes’ Rule:

P(D | H) x P(H)
P(D)

where H is an hypothesis, and D is the set of observed data, and where we are
looking for the hypothesis H that maximizes P(H | D) it follows :

P(H|D) =

—log P(H | D)= —1log P(D | H) —log P(H) + log P(D)
Minimizing this expression is then equivalent to minimizing:
—log P(D|H) — log P(H)

since the length of D is fixed for any H. This yields the MDLP.
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2.4 Practical problems: encoding scheme and intractability

The problems when trying to apply the MDLP are twofold. First, the length of
an explanation will depend on the languages or codes used for describing both
the theory and the data. Second, Kolmogorov has proved that searching for the
shortest description of an object is NP-complete.

The first problem is known as the encoding problem. An answer to it is that, fol-
lowing the equivalence just mentioned between the MDLP and Bayesl/%ule7 the code
used should reflect, when possible, our prior expectations about the environment:
that is descriptions of common or important concepts should be shorter than des-
criptions of unusual or unimportant ones. We will therefore require that the coding
schemes be efficient, i.e. that they provide optimal encodings of the theories with
respect to their a priori probability of occurrence, and of the data with respect
to each theory. This means that what constitutes a good theory will always be
dependent on our expectations about the world. If this seems disappointing, it is
exactly these expectations that make the induction problem tractable.

To the second problem, the absence of any effective way of calculating the
best theory, there is no other answer than be content with searching for satisfying
theories only.

3 Analogy and M.D.L.P.

3.1 Analogy as an economical perception of the source and
target

Looking at an analogy problem, we can consider the data as the descriptions of,
and the theories as the conceptual constructions that allows to represent Sy, Sa,
R; and R> as well as the transformations and ;. Now what makes ag and [
interdependent is that they are built using as many common parts or abstractions as
possible. This allows the economical description of the analogy. Because there does
not always exist a common generalization of the analogues (they might belong to
different domains), it might be necessary to introduce different sets of abstractions
or models, M; and M. These models correspond to the ontologies or primitive
descriptions that allow the “perception” of the relevant features of the initial data
S1, So and Ry (see figure 77).

We propose the following formalization of the MDLP when applied to analogy.
M is considered as the theory, and we look for efficient ways of encoding in this
theory Ms, o and B1. The overall complexity of the analogy is then measured using
the formula:

L(Analogy) = L(My) + L(B1 | My) + L(aar) + L(as | aar) (1)

It must be noted that ap; = I(M;y | M2) the information required to generate
Ms, when knowing M; , and that o and B; are similarly defined.
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Figure 2: The interplay between conceptual structures M; and Ms and the repre-
sentation of S1, Sy and R; as well as ag and ayy.

3.2 Overview of the task domain and the experiments

As a task domain, we have chosen the microworld developed by Hofstadter et al.
for the CoPYCAT project [?]. In this domain, the analogy problems consists in
finding how a letter string is transformed given, as an example, another string and
its transform. For instance, given that abc = abd, what becomes of iijjll = 7.

This microworld offers several useful features. It is simple in its definition and it
is reasonably straightforward to find adequate knowledge representation primitives
for it. It nonetheless provides much of the richness of the analogy problem. And,
finally, it is easy to rate the relative merits of the possible solutions for the test
riddles.

As a first step towards a complete account of analogy as a Minimum Description
Length problem, a preliminary check for the feasibility of the project is to build an
encoding scheme for the abstractions, rules and concepts than can enter analogy
making, and then see if the ensuing description lengths of possible solutions for
given test problems reflect the expectations about their quality. For instance, it is
expected that, to the afore-mentioned problem, iijjll is a better solution than iijjld.
Is the description length associated with the first solution accordingly shorter than
the description length for the second one ?

3.3 Proposal for an encoding scheme

In an analogy problem, we can consider that the data are the descriptions of the
source and the target, and the theories are the conceptual constructions that al-
lows to express the transformation of the source into the target and the relevant
properties of the source that need to be transferred (see figure ?? in section ?7?).
We now have to describe the primitives that allow to represent both the data and
the theories. At the same time we have to assign them a coding length that obeys
as much as possible the efficiency criteria underlined in section xxx.

The knowledge representation primitives are mostly the ones used in [?]. They
include: the 26 letters of the alphabet, numbers, concepts of relative positions such
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as leftmost, rightmost and middle, types of objects called unit-base such as letters
and groups of letters, directions for reading the strings: left and right, primitives for
successor laws like succ(i,z) meaning taking the ith successor of unit-base z, and
pred(i,z) for the corresponding ith predecessor of unit-base z.

Using these primitives, we define templates for the descriptions of the letter
strings and for the descriptions of the transformations between letter strings. These
templates constitute the theories that are to be compared with respect to the sim-
plicity of the description they will allow. The templates or conceptual primitives
that yield the shortest description of the analogy will be selected as th best ones.
By using them, we single out the most relevant aspects of the analogy.

3.3.1 Description for the letter strings

The letter strings (e.g. abc or iijjkk) can be described using a template formulated
as a grammar. For each string we may specify the following characteristics: a read-
direction, the unit-base, the successor-law, the length, and the starting unit-base.
Each of these “attributes” can possibly be itself described recursively using other
attributes. For instance,

iijjkk = a read-direction (right)
unit-base (group of same unit-base (letters) of length (2))
successor-law (letter — succ(1,letter)) of length (3)
starting-with (unit-base of (letters = ‘T))

This description corresponds to the perception of the string iijjkk as the group-
ing of three successive groups of 2 identical letters. Of course, other perceptions
are possible, as for instance a very litteral and myopic one:

iijjkk = concat(i,i,j,j,k,k) which does not convey any structural information.

3.3.2 Description for the transformations

A transformation between letter strings or concepts or abstractions must specify
what has to be changed in the description so as to obtain the transformed object
from the original one. This corresponds to the conditional information needed, in
addition to the information contained in the original object, to get the new one.
The best induction is obtained when this conditional information is maximally
compressed. Here the application of the MDLP results in the choice of certain
abstractions and constructions thereof.

For instance, following the works of Hofstadter et al., we will restrain the de-
scription of the dependence relation 3 to the mold “Replace _ by _” where the _ can
stand for diverse concepts of various levels of abstraction e.g. letter, unit-base (...),
“A” suce(i,x).

The resemblance relation « on the other hand will state the correspondence for
each modified attribute of a description. For instance, between the descriptions of
abc and ijk, the o relation may be stated as:
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a = starting-with (unit-base = “A”)
— starting-with (unit-base = “I")

It could as well be stated as:
Oé — 44A77 H “:[77 . “B?? }_> L(J?? . ££C77 '_> “K”

Figure 77 gives an example of an analogy using these description schemes.

a read-direction(right) a read-direction(right)
unit-base(letter) unit-base(group)
successor-law(letter -> succ(1 letter)) successor-law(letter -> succ(1 letter))
of length(3) of length(3)
starting-with(unit-base = A) starting-with(unit-base = I)
OLS
o o ° [
abc iijjkk
A->1
I31
right (0} M right
Replace letter — | group Replace
rightmost letter rightmost grou
g succ(1, ) succ(l,)) & group
by successor by successor

abd iiiill
Figure 3: A simple analogy described using a certain set of primitives.

3.4 The encoding scheme: yardsticks for description lengths

In the absence of prior probabilities on the various concepts and compound descrip-
tions, it is natural to resort to measures of the relative specificity of the concepts:
the more general ones being simpler to specify than less general ones need corre-
spondingly shorter descriptions. It is customary to organize concepts in hierarchies.
In the letter microworld for instance, “group of letters” is more general than “group
of 1 letter”, which is itself more general than, say, the letter ‘A’. We get therefore
the hierarchies of figure ?7.

Each node of these hierarchies is assigned a probability within this hierarchy
according to its specificity. Now, following well-known rules for efficient encoding,
the optimal coding length for a concept of probability P should be —log(P). This
is what will be taken here. For instance the description length of “succ(3,-)” is
then: —log(1/16) = 4 bits.

The description length of compound abstractions will be taken as the sum of
the description lengths of their components. Hence:
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Group of letters

S

Group of 1 letter Group of 2 letters Group of 3 letters
(1/2) (1/4) (1/8) \
A B ¢ AN’ CABT CAC "AAA’ CAAB’
(1/52) (1/104) (1/208)

Figure 4: Exemple of hierarchies of concepts with their attached prior probabilites

L(letter — succ(2,letter)) = —2log P(group of 1 letter) -log P(succ(2,.))
1 + 3 = 4 bits

3.5 Illustration
We illustrate this with the following example: abc = abd ; iijjkk = ?

S1 = a read-direction(right)
unit-base(letter)
successor-law(letter — succ(1,letter))
of length(3)
starting-with(letter = “A”)

Sy = a read-direction(right)
unit-base( group of same letters of length(2))
successor-law(letter — succ(1,letter))
of length(3)
starting-with (letter = “I”)

M, = a read-direction(right)
unit-base(letter)
successor-law(letter — succ(1,letter))
of length(3)

My = a read-direction(right)
unit-base( group of same letters of length(2))
successor-law(letter — succ(1,letter))
of length(3)
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Therefore:

an = unit-base(letter) — unit-base(group of same letters of length(2))
(as |an) = starting-with(letter = “A”) — starting-with (letter = “I”)
51 = “Replace the rightmost letter by its successor”

We then get using an extended version of the encoding scheme described above:
L(My) = —log(1/2) —log(1/2) +4+2 = 8.00 bits
LBy | My) = —log(1/3) = 158
Liaar) —  _log(26/262) — 470 So that the over-
L(as | ap) = —log(1/52) = 5.70

all complexity of this analogy is: 20 bits.

4 Experimental results

In the work partially reported here, we examined three questions. First, does the
analogy = economical perception perspective seem to have some validity? Second,
what exactly is transferred in an analogy? And last, what is the optimal level of
abstraction, in the context of an analogy, for the intermediary concepts M; and
My?

To this aim, we have set to manually translate miscellaneous analogy problems
in the letter microworld with various competing solutions, and then to compute
their corresponding complexity. We compared then the results obtained both with
intuitive ratings of the diverse analogies and with attached frequency results mea-
sured with a set of subject and reported in [?] (multiple answers were possible).
We made also a comparison with COPYCATS behavior so as to test if the fact that
we share with this system a lot of the same representation primitives induces a
bias towards similar results. The expectation, if, our model is correct is that less
complex analogies should correspond to the preferred ones. At the same time, we
inspected the abstractions used in the best analogies with regard to the second and
third questions above. For lack of space, only sketchy details of some experiments
are given thereunder, more can be found in [?].

Problem 1: abc = abd ; iijjkk — ?

Solution 1: “Replace rightmost group of letters by its successor” iijjkk = iijjll
Solution 2: “Replace rightmost letter by its successor” iijjkk = iijjkl

Solution 3: “Replace rightmost letter by D” iijjkk = iijjkd

Solution 4: “Replace third letter by its successor” iijjkk = ijkkk

Solution 5: “Replace Cs by Ds” iijjkk = iijjkk

Problem 2: abc = abd ; srqp = ?

Solution 1: “Replace rightmost letter by its predecessor” srqp = srqo
Solution 2: “Replace leftmost letter by its successor” srqp = trqp
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Problem 3: abc = abd ; xcg = ?

Solution 1: “Replace rightmost letter by its successor” xcg = xch
Solution 2: “Replace Cs by Ds” xcg Longrightarrow xdg
Solution 3: “Replace rightmost letter by D” xcg Longrightarrow xcd

P1;S1 | P1;S2 | P1;S3 | P1;54 | P1;S5
Complexity || 20 bits 23.3 23.4 22.7 29.8
Hum. subj. || 1/26 | 26/26 | 2/26 | N/A | N/A
COPYCAT 81% 16.5% | 0.3% 0% 0%
My rating 1 2 3 4 5

P2;S1 | P2;S2 || P3;SI | P3;S2 | P3;S3
Complexity 16.7 16.7 22.1 25.8 24.8

Hum. subj. || 10/34 | 7/34 || 43/49 | 6/49 | 4/49

COPYCAT 56% | 18.6% || 97.4% | 1.4% 1.2%
My rating 1 1 1 2 3

The figures for the complexity measure were obtained using formula ?? of sec-
tion ??7 and a fully developed version of the encoding scheme briefly presented
in sections 7?7 and ??7. Because this encoding scheme leaves place for arbitrari-
ness in some places, the absolute values of the complexity numbers should be
taken with a grain of salt. Their relative values however are more interesting.
They can indeed be interpreted as relative probabilities of occurrence. Thus,
Prob(P1; S2)/Prob(P1;S1) = 2233720 = 9232 — 10.24. The observation of the
overall table shows that if general trends of the complexity measure are in accord
with experimental evidences with human subjects and COPYCAT, the comparison
at this stage is yet not conclusive.

5 Conclusion

This paper has presented a new perspective where analogy is seen as the result of
an economical perception of the analogues. A formal account for this was given
implying a form of the Minimum Description Length Principle. Experimental tests
on toys problems reveal: (i) that the encoding problem, particularly assigning de-
scription lengths to conceptual primitives, is difficult, and (ii) that nonetheless first
results confirm that less complex analogies are also the preferred ones. In addition,
the proposed model offers some bases for explaining the properties of analogy listed
in section 1.3. Analogical thinking is pervasive because it is intrinsically an econom-
ical mode of thinking. Abstract analogies are preferred because they correspond to
the most economical way of perceiving two things as similar. Good agreement in the
ratings of analogies by different people would result from the sharing of the same
optimal way of perceiving things. Analogy is non involutive and non idempotent
12



because of the asymmetry between the source and the target. And finally, analogy
making can be improved in our model by the learning of prior probabilities of the
perceptual primitives, therefore altering their description length, and thence the
overall relative complexities of the various possible analogies. On the other hand,
this last property is also responsible for the sensitivity to the coding prescription
that renders it a delicate task.

This research reveals the deep interdependencies that may exist between statistics
and forms of inference like analogy that seem to imply only symbolic manipulations
of the descriptions of single situations. If we consider indeed, as we did here, any
inferencing as the search for theories that provide economic encodings for the ev-
idences, and if we recognize that an efficient coding scheme must reflect our prior
expectations about the world, then it follows that inferencing will at the end rely
on statistics. This is why symbolic reasoning and statistical analysis are two sides
of the same coin that cannot be disjoined in Artificial Intelligence.
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